Follow us on Facebook

One on One Support

Health Concerns
VA Issues  

Notice: Website under construction,

May 2014 VA Hep C Treatment Guidelines
UPDATE: Feb 26, 2016-
Funding and Prioritization Status Update

UPDATE: March 2016
VA Hep C Treatment Guidelines
VA to treat all vets in system

By Judith Graham
VA Extends New Hepatitis C Drugs to All Veterans in Its Health System

Orange Count Registry
Vietnam vets blame 'jet guns' for their hepatitis C
By Lily Leung Feb. 14, 2016 
CBS News Investigates
Congress outraged over hepatitis C treatment VA can't afford
Dr. Raymond Schinazi played a leading role developing a drug that cures hepatitis C while working seven-eighths of his time for the VA| By amynordrum

Hepatitis C drug costing VA, DoD millions
By Patricia Kime, Staff writer
We're looking at a company who is milking a cash cow for everything it's worth," Sanders said. 

VA to outsource care for 180,000 vets with hepatitis C
Dennis Wagner, The Arizona Republic 12:27 a.m. EDT June 21, 2015

VA to outsource care for 180,000 vets with hepatitis C
, The Republic | 11:51 a.m. MST June 19, 2015
Dr. David Ross, the VA's director public-health pathogens programs, resigned from the working group. "I cannot in good conscience continue to work on a plan for rationing care to veterans," he wrote.

VA Region Stops Referring Patients To Outside Hospitals Thanks To Budget Shortfall
Michael Volpe Contributor ...According to a memo — the entire region has been forced to stop all “non-VA care” referrals due to a budget shortfall.
Sen. Mark Kirk admitted the VA Choice Program is a failed joke in a letter to Secretary Bob McDonald despite attempts to fix it.

Denied Hep C VA dental care?
Please click here

Dried Hepatitis C Blood Exposure 11/23/2013 Weeks later inconspicuous blood transmits virus and more likely to cause accidental exposures to Hep C

Lack of Standards for
Mass Vaccinations
1970 Jetgun Nursing Instructions

2014 AASLD Study Hepatitis C not an STD

Test the Rest Campaign
Documentation & Surveillance Alerts
Military Hepatitis History  
Understanding The Liver 
VA Flow Sheet for Cirrhosis
VA Defines Risk Factors
Hep C & Pro-Prebiotic
Need to know-Grassroots Research
Blog Another12Weeks
One Vets' Journey Though Treatment

 Ask NOD
 What Would Veterans Do?
Blog for VA Claims

Help with VA Claims

Info: Plan Backfires-
VBA Fast Letter Boost Claims
Legal- Fed Regs state:
Judge decision may be relied upon
Cotant v. Principi, 17 Vet.App. 116, 134 (2003),
Service Connected Claims
# 1 Conclusion of Law 
# 2 Conclusion of Law 
More Claims
Jetgun Decisions
Hep C Decisions
Search Board of Appeals Website
BVA Jetgun Decisions
BVA Hepatitis C Decisions

Great Advice!  
After the jetgun win
What to do next



American Journal of Infection Control
, Volume 26, Issue 4, August 1998, Pages 442-445

Potential for cross-contamination from use of a needless injector.

Annette M. Weintraub, Manuel Ponce de Leon


Background: Medical devices that are used on patients in fields containing potentially infectious body fluids can become contaminated and transmit infectious agents to other sites on the patient or to other patients if the devices are not properly cleaned and decontaminated after use on each patient treatment site. One such device is the needleless or jet injector, which is widely used in medicine and dentistry to deliver local anesthetic in procedures such as bone marrow aspirations, lumbar punctures, and cutaneous and intraoral injections. This study was conducted to determine whether cross-contamination can occur on in vitro reuse of a needleless injector and whether a manufacturer’s recommended method of injector decontamination (ie, immersion sterilization) is effective in the prevention of cross-contamination.

Methods: The study was performed with new autoclaved injectors, fluorescein dye, and Streptococcus crista (the bacteria commonly found in saliva) in the field of use to determine whether these devices can become contaminated during use and carry over the contamination to other sites during immediate reuse.

Results: Fluorescein dye and bacteria tests with the needleless injectors showed that contamination or carryover does occur. It appeared to be reduced to a minimum when an autoclaved, sterile rubber cap used over the head of the device during injection was replaced between each use, although replacement of the rubber cap alone did not prevent carryover. Immersion of the head of the injector in a 2% glutaraldehyde solution for 30 minutes followed by a sterile water rinse and the replacement of the rubber cap with a sterile cap between uses was shown to curtail bacterial growth and prevent cross-contamination on immediate reuse of the device.

Conclusion: This study demonstrated that needleless injectors become contaminated during in vitro use and direct contact with contaminated surfaces and that needleless injectors carry over the contamination to subsequent sites of release. The replacement of the injector’s rubber cap with a new one after initial discharge or the removal of an exposed rubber cap and immersion of the head of the injector in 2% glutaraldehyde followed by a rinse of the head in sterile water, as recommended by one injector manufacturer, can minimize or eliminate the carryover.

(AJIC Am J Infect Control 1998;26:442-5)